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The spin-1/2 Heisenberg antiferromagnet on a
square lattice with additional next-nearest-neigh-
bour interactions — commonly known as the J1–J2
model — occupies a very special place in the liter-
ature of frustrated magnetism. Despite the apparent
simplicity of its Hamiltonian

where the sum labeled 
ij�1 runs over nearest-
neighbour and the sum 
ij�2 is taken over diagonal
next-nearest-neighbour bonds, this model with
only one adjustable parameter (the ratio J2/J1) dis-
plays a great wealth of different physics. 

For small J2/J1 � 1 its ground state is a simple (�,
�) Néel antiferromagnet (AF) with reduced sublat-
tice moment.  For large J2/J1 � 1 it provides a par-
adigmatic example of “order from disorder” — a
(�, 0) collinear Néel phase (CAF) is selected by
fluctuations from a degenerate manifold of classi-
cal ground states. For intermediate J2/J1 � 0.5, it
exhibits a magnetically disordered “spin-liquid”
phase, much studied as a potential realization of
Anderson’s resonating valence bond (RVB) con-
cept and a simple model for what happens on dop-
ing the layered AF La2CuO4, the parent compound
for a family of High-Tc superconductors [1].

Given the great theoretical interest in the J1–J2
model, it is perhaps surprising that the first “J1–J2
compound”, Li2VOSiO4, was only discovered very
recently [2]. Li2VOSiO4 has a layered structure, in
which spin-1/2 V4+ ions reside within well-separat-
ed VO4 pyramids, connected by SiO4 tetrahedra to
form a square lattice of magnetic sites. The
exchange between V4+ ions is weak, indirect, and
leads to both nearest-neighbour J1 and next-near-
est-neighbour J2 interactions. In Li2VOSiO4 the
ratio J2/J1 � 10, and the magnetic ground state is a
(�, 0) CAF [4]. However, this is only one point on
the axis J2/J1 — are there more compounds which
we can use to fill in the gaps?

The answer is yes, and the most recently discov-
ered J2/J1 compounds Pb2VO(PO4)2, BaZnVO(PO4)2
and SrZnVO(PO4)2 (described in “First Experi-
mental Realization of a Frustrated Ferromagnetic

Square Lattice System”) turn out not only to have dif-
ferent ratios of J2/J1, but to have ferromagnetic (FM)
nearest-neighbour exchange J1. Given the com-
plexity of the exchange path between neighbouring
V4+ ions in these materials, FM J1 interactions are
not surprising in themselves. What is surprising is
the extent of the literature devoted to the J1–J2
model with FM J1 at the time these compounds
were discovered — one solitary paper [6]. The
questions which we have chosen to address and
which are described in this report, are the basic,
fundamental properties of the J1–J2 model with FM
interactions:

(i) What is the nature of its ground state as a
function of J2/J1?

(ii) What are the thermodynamic properties of
each of these phases?

In the first part of this report we consider the
phase diagram and low temperature properties of
the J1–J2 model, as summarized in Figure 1. In the
second part we present comprehensive numerical
results for its heat capacity CV(T) and magnetic
susceptibility �(T) in the high temperature para-
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Fig. 1: Phase diagram for the spin-1/2 J1–J2 Heisenberg
model on a square lattice. Regions of simple (�, �)  and
collinear (0, �) Néel order, and a simple FM phase are
separated by two different spin liquid regions. The
known spin liquid region for AF J1 (0.7 > J2 /J1 > 0.4) is
a gapped, crystalline state. A new, gapless spin liquid
region occurs for FM J1 (–0.7 < J2 /J1 < –0.4).
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magnetic phase. These can be compared directly to
experiments and used to help determine exchange
parameters in real materials.

Since the properties of the J1–J2 model depend
only on the ratio J2/J1, and not the absolute size of
the exchange coupling, it is convenient to introduce
an overall energy scale Jc = (J1

2 + J2
2)1/2 and a frus-

tration angle � such that J1 = Jc cos(�), J2 = Jc
sin(�), and 

� = tan–1 (J2/J1). (2)
Variation of the control parameter � leads to quan-
tum phase transitions between the ordered and
spin-liquid like phases in Figure 1. As it turns out,
fits to CV(T) and �(T) at high temperatures fre-
quently lead to two, equivalently good, values of �
=��, and in the final part of the report we propose
and make predictions for an experiment that can be
used to distinguish between these values. 

In the simplest approximation, the ground state
of the J1–J2 model is the classical state which min-
imizes the energy of Equation 1. In this approxi-
mation the model supports three distinct, collinear
phases shown in Figure 1. A (�, �) Néel AF state
(NAF) is found for antiferromagnetic J1 > 0 and
J2/J1 < 0.5, and a FM state for ferromagnetic J1 < 0
and J2/|J1| < 0.5. For AF J2 > |J1|/2 the classical
energy selects a manifold of states with nested
NAF order parameters on the diagonal J2 bonds.
However, a collinear (�, 0) Néel AF state (CAF) is
selected by fluctuations [7].

Exactly on the lines J2/|J1| = 0.5 — shown by
dashed lines in Figure 1 — there is not a single
classical ground state, rather a whole family of
commensurate and incommensurate spiral states.
In this case fluctuations do not select a unique clas-
sical ground state, and this classical degeneracy has
important consequences for the quantum phase dia-
gram, discussed below.

We have performed semi-classical spin wave
expansions for each of the three classical ordered
phases of the J1–J2 model. Typical results for the
CAF phase are shown in Figure 2. At low temper-
atures, the thermodynamic properties of these
phase are controlled by their spin wave excitations,
and it is possible to calculate them explicitly with-
in a semi-classical approximation — results for
heat capacity and inverse magnetic susceptibility
are shown in Figure 3 and Figure 4 (for further
results, see [8]). However, at both edges of the
CAF phase, the spin wave dispersion becomes ill-
conditioned. It exhibits entire lines of zero modes,
visible in Figure 2 for spectra calculated at J2 =
|J1|/2, neighbouring the NAF and FM phases.

These zero modes lead to violent fluctuations
about the CAF ordered state. Within the linear spin
wave approximation, they lead to a divergence of
the specific heat (Fig. 3), and are strong enough to
destroy its ordered moment entirely (Fig. 5). This
means that classical CAF order is no longer the
right starting point to understand the ground state
for J2/|J1| � 0.5.

The parameter range J2/J1 � 0.5 has been inten-
sively studied for AF J1 in the context of high tem-
perature superconductivity. It is generally accepted
that a new quantum “spin-liquid” phase forms bor-
dering the NAF for J2/J1 � 0.4, in which spins
form a “columnar-dimer” state — a crystal of sin-
glets on parallel J1-bonds [9]. CAF order is not
believed to be stable for J2/|J1| � 0.7. Our spin
wave results provide a strong prima face case to
believe that another spin-liquid phase forms for
FM J1, at the boundary between CAF and FM
phases.  More detailed numerical studies confirm
this hypothesis, and reveal that this new spin-liquid
is a gapless nematic state [10].

Fig. 2: Evolution of spinwave dispersion in CAF phase. From left to right - border with NAF, within CAF phase for AF
couplings, pure next nearest neighbour exchange, border with FM. The horizontal plane shows the full Brillouin zone
for the square lattice (–� < qx < �; –� < qy < �), the vertical axis the spin wave frequency �(qx,qy).
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Further insight into the nature of the spin-liquid
like phases at the margins of the collinear antifer-
romagnetic regime can be gained from our exact
analytic diagonalization of the eight-site cluster.
The resulting energy spectrum, classified by spin,
is shown in Figure 6. The straight forward quantum
phase transition between NAF and FM states for �
= –��2 appears as multiple crossings of ground
state and excitation energy levels, all of which take
place at the same critical value of � = –��2.

At those values of � at which the singlets associ-
ated with theNAF and CAF order parameters cross,
the reordering of excited states does not take place
at a single critical value of �, but is spread over a
finite range of �. Simply counting where the low-
est-lying triplet excitation crosses the lowest-lying
singlet excitation on either side of the ground state
crossing gives a remarkably good (if arbitrary) esti-

mate of the extent of the spin liquid region — from
J2/J1 = 0.38 to J2/J1 = 0.60, values which are com-
parable with those found in the existing literature.

Examining the level crossings associated with
the transition from CAF to FM we see the same
extended structure. In this case applying the same
naïve criterion based on the crossing of first excita-
tions would predict a spin liquid region from J2/J1
= –0.38 to J2/J1 = –0.60. 

In principle, the predictions for low temperature
properties outlined above can be explored in great
detail using elastic and inelastic neutron scattering.
However, these techniques are expensive, time
consuming, and require good single crystals of
macroscopic dimension. It is much easier to char-
acterize a new magnetic material using its high
temperature heat capacity and susceptibility than to
wait until large crystals become available for neu-

Fig. 3: Evolution of the heat capaci-
ty CV as a function of the frustration
angle �. In FM regions the quantity
plotted is the prefactor � of CV = �T,
and in AF regions the prefactor � of
CV = �T2, where temperature is
measured in units of Jc.
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Fig. 4: Evolution of the inverse trans-
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of the frustration angle �, in units
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Fig. 5: Evolution of sublattice mag-
netization ms as a function of the
frustration angle � within the three
classical ordered phases of the  J1–J2
model (semi-classical spin wave
approximation).
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Fig. 6: Energy levels (per spin) of the 8 site cluster, classified according to total spin V as a function of the frustration
angle f, in units of Jc: solid black lines — � = 0 (singlet); dotted blue lines — � = 1 (triplet); short-dashed orange
lines — � = 2; long-dashed red lines — � = 3; dash-dotted black line — � = 4 (maximal spin).
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tron scattering. Fortunately, the quasi-2D vana-
dates which offer the best realization of the J1–J2
model have exchange interactions (and therefore
transition temperatures) of the order of a few
Kelvin, such that “high temperatures” are in this
case of the order of 10...100 K, easily achieved in a
standard He cryostat.

In order to put measurements of heat capacity
and magnetic susceptibility on a firm theoretical
basis we also studied the thermodynamic proper-
ties of the J1–J2 model in its high temperature para-
magnetic phase [8]. These calculations have been
accomplished through the analytic exact diagonal-
ization of an 8-site cluster using a finite tempera-
ture Lanczos algorithm [11] to numerically calcu-
late experimental response functions for clusters of
N = 16 and N = 20 spins (Fig.7).

Typical results are shown in Figure 8 (heat capaci-
ty) and Figure 9 (magnetic suceptibility), defined by

where 
...� denotes the thermal average, Sz
tot = 
iSi

z

the z component of the total momentum of the sys-
tem, and N the number of sites of the system con-
sidered. NA is the Avogadro constant, �0 the mag-
netic permeability, g the gyromagnetic ratio, �B the
Bohr magneton, and kB the Boltzmann constant.
For the present nonmagnetic (zero field) case we
have 
 Sz

tot � =0.

We have computed the heat capacity CV(T) in the
full range of the frustration angle � for different
cluster sizes. Figure 10 shows the maximum of the
heat capacity as a function of �. The lower figure
shows the frustration dependence of the tempera-
ture TCV

at which the maximum is reached. 
Two overall effects are clearly visible: (1) Apart

from the regime with strong frustration, the maxi-
mum rises with increasing cluster size. (2) The
maximum temperature decreases with increasing
cluster size. Taken together, this indicates that
entropy is shifted to lower temperatures, a sign of
the missing long-range correlations not included in
the partition function for the small clusters.

Our results are in qualitative agreement with
those in [3,13]. They represent a quantitative
improvement over the estimates of [3]. Direct com-
parison with [13] is made difficult by the ambigui-
ties associated with analytic continuation of a
series using Padé approximants, and by the fact
that the limited number of cluster sizes, we can use
at present, do not permit a finite size scaling analy-
sis. In agreement with [3], CV

max drops sharply near
the crossover between the spin liquid regime and
the collinear phase around J2/J1 � 0.6, correspon-
ding to �/� � 0.17. Similar drops occur at the bor-
ders of the FM regime with the NAF and CAF
phases, respectively. These drops are accompanied
by a smaller TCV

in order to conserve the entropy of
the system.

In Figure 11, the behaviour of the maximum of
the magnetic susceptibility � max together with the
temperature at which the maximum is reached is

Fig. 7: Tiles of size eight, 16, and 20
used in the finite-temperature calcu-
lations. In the lower right corner, the
labelling of the two exchange con-
stants is illustrated.
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displayed. In contrast to the heat capacity, �(T)
does not display an anomaly upon crossing the
spin-liquid regime. The maximum value diverges
near the crossover to the FM regime, while its posi-
tion approaches T = 0, which is the expected
behavior. Apart from that, the parameter depend-
ence of the maximum position T� is qualitatively
the same as for TCV

.
Our predictions for the maximum values of CV(T)

and �V(T), and the temperatures at which they occur
can be compared directly with experimental data for
square lattice vanadates (Table 1). However careful-
ly these fits are constrained, they always give two
possible values for the frustration parameter � [13].
In the case of Pb2VO(PO4)2, one of these fits corre-
sponds to FM J1 and a CAF ground state, the other
to AF J1 and a NAF ground state. To distinguish
between the two possibilities �±, further diagnostic
tools are necessary. The sign and magnitude of J1
could easily be resolved by performing inelastic
neutrons scattering on large single crystals of
Pb2VO(PO4)2, however at present, only powder
samples and very small single crystals are available.

Therefore, we have developed two alternative
approaches to determine �.

The first is the measurement of the third-order
susceptibility, defined via the small-field expansion
of the magnetisation M(T):

where the symbol 
...� denotes the trace over the sta-
tistical operator for zero magnetic field B. �� takes
on different values in the CAF and NAF phases [14]:

In all non-ferromagnetic phases of the model, the
temperature dependence of � � (T) has a pro-
nounced maximum at a temperature T�max, vanishes
at a temperature T0�, passes through a tiny mini-
mum at a temperature T�min, and eventually
approaches the high-temperature T –3 dependence.
We have followed these characteristic temperatures
as a function of the frustration angle. The initial
maximum temperature, together with the value of
�� at that point, are shown for the 16-site (solid
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Fig. 10: Maximum of the heat capac-
ity CV(T) and its position TCV

as func-
tions of the frustration angle �.  The
open (solid) circles denote the
results for the 20-site (16-site) clus-
ter, the dotted line denotes the eight-
site cluster.

Fig. 11: Maximum of the uniform
magnetic susceptibility �(T) and its
position T� as functions of the frus-
tration angle �. The open (solid) cir-
cles denote the results for the 20-site
(16-site) cluster, the dotted line
denotes the eight-site cluster.

Fig. 12. Maximum value (top) and
maximum temperature (bottom) of the
third-order magnetic susceptibility
of the frustrated Heisenberg antifer-
romagnet. The filled dots represent
the exact-diagonalization results for
a 16-site cluster, the open circles
correspond to a 20-site cluster.
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dots) and 20-site cluster (open circles) in Figure 12.
The maxima occur at temperatures Tmax � Jc,
therefore finite-size effects are large.

The characteristic temperatures, together with
the values of �� at maximum and minimum, are
compiled in Table 2 for � = –0.11 � and 0.64 �.
Likewise shown is the ratio �CW/Tmax of the Curie-
Weiss temperature to the position of the character-
istic maximum of the linear susceptibility �(T)
taken from Ref. [8], which is equal for both values
� = �±. Together with the results from Ref. [8],
our findings should be useful in determining the
precise value of � for a given J1–J2 compound, as
exemplified here for Pb2VO(PO4)2. The second
approach is to use diffuse neutron scattering, which
is effective for powder samples and in the para-
magnetic phase — to measure the angle-integrated
spin structure factor S(|q|, T).

S(|q|, T) contains information about fluctuations
of magnetic order for T > Tc, and has quite different
properties for values of � corresponding to FM and

Pb2VO(PO4)2 Li2VOSiO4 Li2VOGeO4
[5] [2] [3] [12] [13] [2] [12]

�CW [K] 4 7.4 8.2 9.65 7.2 5.2 9.8
�CW/T� 0.49 1.39 1.69 1.49
�–/� 0.67 0.64 0.41 0.27 0.47 0.43 0.36 0.38 0.43 0.33
�+/� –0.11 0.03 0.13 0.06 0.08 0.07
(J1,J2)– –1.64 –2.13 3.5 1.1 11.7 4.76 2.13 2.5 4.76 1.69
(J1,J2)+ –0.37 0.1 0.44 0.18 0.25 0.24

φ
π

ΘCW
Tmax

kBT ′′′
max

Jc

kBT ′′′
0

Jc

kBT ′′′
min

Jc

χ ′′′
maxJ3

c N
NAμ0g4μ4

B

χ ′′′
minJ3

c N
NAμ0g4μ4

B

-0.11 0.49 0.11 1.69 2.37 1.41 -0.0018

0.64 0.49 0.21 1.45 2.02 0.64 -0.0029

Tab .2: Characteristic values for the third-order suscep-
tibility obtained for the two different frustration angles
� = –0.11 � and � = 0.64 � which are equally possible
for the compound Pb2VO(PO4)2. The second column
lists the ratio of the Curie-Weiss temperature to the max-
imum temperature of the linear susceptibility as
obtained from Ref. [8].

Fig. 13: Static spin structure factor S(|q|, T) of the 16-
site cluster for J1/kB = –6 K, J2/kB=10 K (collinear
phase, top) and J1/kB = 10 K, J2/kB= –6 K (Néel phase,
bottom figure). The values chosen for J1 and J2 corre-
spond to those given for Pb2VO(PO4)2 in [5].

Tab. 1: Compilation of the experimental results and theoretical estimates on the Curie-Weiss temperature �CW =
(J1+J2)/kB, the ratio �CW/T� of it to the maximum position of the uniform magnetic susceptibility �(T) and the corre-
sponding frustration parameters. The experimental data are taken from [2,3,5]. The displayed theoretical values for the
frustration parameters obtained by fits to high-temperature series expansions are taken from [12,13]. The reference
numbers are used to label the corresponding columns. The unlabelled columns contain our own estimates derived from
the dependence of �CW/T� on �. The ± subscripts of � and J2/J1 distinguish the two different possible points in the
(J1,J2) phase diagram.
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AF J1 — where FM J1 favors a CAF ground state,
S(|q|, T) is strongly peaked for |q| ~ �, while where
AF J1 favors a NAF ground state, S(|q|, T) is strong-
ly peaked for |q| ~ φ2�. Moreover, the explicit tem-
perature dependence of S(|q|, T) contains infoma-
tion about the absolute values of J1 and J2.

Examples of predictions for S(|q|, T) taken from
our finite temperature Lanczos calculations are
given in Figure 13. We have chosen the two frus-
tration angles �– = 0.64 where the system is in the
collinear phase and �+ = –0.11 corresponding to
the Néel phase. These values are, again, those
determined from the static susceptibility of
Pb2VO(PO4)2. For the collinear phase, the maxi-
mum of S(|q|, T) is located at |q| = �, in the Néel
phase S(|q|, T) reaches its maximum near the zone
boundary where |q| = ��2�.

Very recent diffuse neutron scattering measure-
ments of powder samples of Pb2VO(PO4)2 [15]
show unambiguously that S(|q|, T) is peaked for |q|
~ �, and has a temperature dependence compatible
with fits to �(T) and CV(T) for FM J1. These exper-
iments, taken together with our calculations pro-
vide definitive proof that Pb2VO(PO4)2 does
indeed have FM J1 interactions. This means that
�+/� � 0.64 is the proper frustration angle leading
to J1 � –5 K, J2 � 10 K for this compound. 

The study of two-dimensional frustrated ferro-
magnets is very much in its infancy. However,
there is every reason to believe that these systems
will prove as interesting as the widely studied two-
dimensional frustrated antiferromagnets. Indeed
frustrated ferromagnets have already delivered a
number of big surprises — notably the spin liquids
observed in He III absorbed on graphoil [16], and
in the new quasi-two dimensional oxychloride
cuprate (CuCl)LaNb2O7 [17]. If, as seems over-
whelmingly probable, BaZnVO(PO4)2 and
SrZnVO(PO4)2 also have FM J1, then an entire
family of FM J1–J2 compounds is now available to
study, each member with its own characteristic
level of frustration. 

The work reported here provides a solid theo-
retical foundation forfurther studies of frustrated

square lattice FM’s such as Pb2VO(PO4)2. How-
ever there are many more interesting questions
which one could hope to answer.  For example,
what are the different phases of these systems
under applied magnetic field, where frustrated AF’s
are known to exhibit new metamagnetic states? Is
it possible, by judicious chemical substitutions to
tune the exchange interactions of a square lattice
vanadate into the proposed spin-liquid region? Can
the suppression of Tc by competing interactions in
frustrated ferromagnets shed any light on the
nature of quantum critical points in itinerant mag-
nets? It is our hope that all of these questions will
be addressed in the future.
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